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Abstraci: We investigate the use of a linear compensator to regulate a parameter-dependent control system. This system may be linear 
or nonlinear. Our goal is to design a compensator that will ensure stable regulation over a wide range of parameter values, This paper 
reports a fundamental limitation on achieving this aim. In particular, we show that systems with a special, unregulatable, structure form 
hypersurfaces on the open-loop equilibrium manifold. Such systems include, but are not restricted to, those with transmission zeros at 
the origin. These surfaces partition the open-loop equilibrium manifold into disjoint open sets. We show that a linear compensator 
designed to regulate a system in some such partition must fail to regulate almost all systems in an adjacent partition. Therefore, by 
consideration of the open-loop system only, we derive upper bounds on the robustness of any linear regulator. We discuss some other 
qualitative aspects of the closed-loop dynamics. 
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1. Introduction 

Our  objective is asymptot ic  regulation of  the output  vector (assumed to also be the measurement  vector) of 
a parameter-dependent  control  system at an equilibrium point. All results apply to parameter-dependent  
linear or  nonlinear systems. We consider the situation that the parameter  values, while constant, are uncertain. 
As the parameter  vector varies, the equilibrium point  may  also vary. We wish to select a linear compensa tor  
that  will ensure regulation over a wide range of  parameter  values. M a n y  authors  have considered the use of 
linear theory to regulate nonlinear  systems, e.g. I-6, 4]. Ou r  focus lies on the lines of  Francis and W o n h a m  1-6], 
who show that  a structurally stable regulator  designed for a linear approximat ion  of  an analytic system will 
regulate the nonl inear  system in some ne ighborhood  of  the equilibrium point, but  we are concerned with 
behavior  in the large, rather than locally. Most  previous studies do not  address parameter  dependence, rather 
they require that  the initial condit ions be sufficiently close to equilibrium. Kwatny,  et al. 1-9] address 
parameter  dependence directly. They show that  a structurally stable linear regulator  designed for a linear 
approximat ion  to the nonl inear  system according to the s tandard theory 1-6, 5, 10] that  asymptotical ly rejects 
constant  disturbances will regulate the nonlinear  system in some ne ighborhood  of the design point. In  this 
case the ne ighborhood  includes small variations in the parameter  vector, and so considers small variations in 
the locat ion of  the equilibrium point  as well as the initial conditions. Theorem 3.2 in 1-9] states that  certain 
structural  properties of the open- loop  nonl inear  system determine an upper  bound  on the allowable 
variat ion in the parameter  vector. This note expands on that result. 
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Our approach is as follows. We show that the set of open-loop regulated equilibrium points forms 
a regular submanifold of the state-control-parameter product space, which we call the equilibrium manifold. 
The equilibrium manifold is naturally partitioned by codimension-one submanifolds of 'singular 
points'. These singular points are distinguished by the property that the system pencil of the linearized 
open-loop dynamics is singular. This may be due to a transmission zero at the origin, but other causes exist. 
We select a design point in any such partition, which we call the design partition. Any linear compensator 
ensuring structurally stable regulation at the design point must contain an observable and controllable 
internal model of the disturbance I-6]. We use these properties of the compensator to show that 
the closed-loop equilibrium manifold is diffeomorphic to the open-loop equilibrium manifold, and that 
the submanifold of open-loop singular points is diffeomorphic to a submanifold of closed-loop singular 
points. Therefore, the closed-loop equilibrium manifold is also partitioned. The closed-loop singular 
points correspond to systems whose linearized dynamics have an eigenvalue at the origin. By genericity 
arguments, if there is a stable closed-loop equilibrium point in one partition then almost every closed-loop 
equilibrium point in any adjacent partition is unstable. But the partition diffeomorphic to the design 
partition contains such a point, and its boundaries correspond to the boundaries of the design partition. 
Therefore, the design partition represents an upper bound on the parameter robustness of any linear 
compensator. 

We make repeated use of the following useful and well-known theorem. 

Theorem O. Given Coo manifold .A: of dimension n and Coo manifold J¢  o f  dimension m, and a Coo mapping 
F : Jff  ~ J¢, i f  F is o f  constant rank k on Jff , then for  any q eF(J f f ) ,  F - l ( q )  is a closed, regular, submanifold of  
Jff  with dimension n - k. 

Proof. See [3, pp. 79-80]. [] 

2. The open-loop equilibrium manifold 

We consider a regulated dynamic system defined by the differential and algebraic equations: 

:~ = f (x, u, c), 

y = g(x, c). 

Here x e ~  r c ff~n is a vector of states, u ~ q / c  R p is a vector of controls, ceC¢ c R k is a vector of constant 
parameters, and y ~ ¢  ~ R p is a vector of controlled outputs, all of which we assume are available for 
measurement. Here each R i is an/-dimensional Euclidean space. We assumefand g are 'sufficiently smooth'. 
For convenience, we take 'sufficiently smooth' to be infinitely differentiable, written C °°. Our 
control objective is to asymptotically drive y to zero, while maintaining internal stability. Note 
that we assume that the number of controls is equal to the number of outputs. This assumption is consistent 
with standard techniques, as, locally, additional controls give no added benefit. One result of this study, 
however, is that added controls may significantly increase robustness. We discuss this in the conclusions 
section. 

Define the open-loop regulated equilibrium function ~ol, 

L c) _1" 

A point (x, u, c) satisfying the open-loop regulated equilibrium condition, ~o,(X, u, c) = 0, is an open-loop 
regulated equilibrium point. The set of all such points is denoted by 8o~. 
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We consider ~oJ as a C oO mapping from ~ x q /x  q¢ to •"+P. Then the rank of ~o~ (at a given point) is 
defined to be rank of the following matrix of partial derivatives: 

Of u,c) Of Of ] 
~c tX, u, rank ~ol = rank ~xx (x, ~uu (x, u, c) c) 

Og Og J " 
(x, c) 0 ~c (x, c) 

Consider f x q /x  ~ as a (n + p + k)-dimensional manifold with the product topology. We assume there 
exists ~ ,  an open submanifold of 5f x q /x  cg, such that 

(WRC) rank ~o~ = n + p 

for all (x, u, c) on ~.  We call this the weak regularity condition. Therefore, by Theorem O, 8ol = • - x (0) is 
a closed, regular, submanifold of ~ with dimension (n + p + k ) -  (n + p ) =  k. We refer to 8ol as the 
open-loop equilibrium submanifold. ~o~ has the relative topology, i.e. q / c  8or is open if and only if 
q / =  ~ m go~, with ~ open in ~.  

We further distinguish certain points of o#o~. If the matrix 

Of (x, u, c ) Of ] 
~'o,(X, u, c) = ~x ~u (x, u, c) 

Og 
(x, c) 0 

satisfies the condition 

(SRC) rank ~Pol(X, u, c) = n + p 

at a point (x, u, c)ego~, we say that (x, u, c) satisfies the strong regularity condition, and we call (x, u, c) 
a regular point. A point at which the strong regularity condition fails to hold is called a singular point. This 
nomenclature requires some justification, for which we must make one more assumption. 

Consider the C ® function D:gol ~ R defined by D(x, u, c) = det ~Uol(X, u, c). We assume that rank D = 1 
on 8ol. We loosely claim that this assumption is not restrictive, but have not pursued it further. For  now we 
note that it allows us to apply Theorem 0 to the set of points b = D-1 (0). Then by the Theorem 0, b is 
a closed, regular, submanifold of 8ol with dimension k - 1. But b is exactly the set of singular points. So we 
see that the singular points form a submanifold of codimension one, and are in that sense 'singular', while the 
regular points form open submanifolds of dimension k. Since b is of constant dimension, and closed, it cannot 
have an edge in 8ol. Therefore, b must partition ~'ol into open disjoint submanifolds of regular points. We call 
these submanifolds sheets. We refer to b as the sheet boundary. As a consequence of these definitions and 
assumptions, a sheet contains no singular points. 

Note that a point is singular if the linearized system at that point has a transmission zero at the origin. This 
is not the only way a point may be singular, though. In terms of the Kronecker invariants of the system pencil 
of the linearized system, the point will also be singular if the corresponding linearization has row or column 
Kronecker indices. In the standard terminology [7]/f ,  at a point (x °, u °, c°)~ol,  the corresponding system 
pencil is singular then the point is singular. 

3. Linear regulation 

We linearize the system equations about an equilibfiumpoint,(x°,u°,c°)e8ol: 

~x = A°~x + B°ru + E°~c, 

6y = C°rx + F°rc, 

where A°,B °, C °, E °, and F ° are the partials evaluated at(x°,u°,c°). 
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We want to design a compensator that will regulate the measurement vector 6y in a neighborhood of 
(x °, u °, c°). For a sufficiently small neighborhood of c o this system looks like a linear system with a small 
constant disturbance. We apply the standard linear theory of structurally stable regulation I-6, 5, 10] theory 
to the linearized system. We assume the following necessary conditions: 

(LR1) (A °, B °) is stabilizable, 

(LR2) (C °, A °) is detectable, 

(LR3) rank _CO = n + p .  

(LR3) is the requirement that the open-loop system have no transmission zeros at the poles of the 
disturbance, in this case a constant. We recognize that (LR3) is equivalent to (SRC), i.e. we require the design 
point (x °, u °, c °) to be a regular point. Strong regularity implies that C o is full row rank, and that the number 
of controls is greater than or equal to the number of outputs. As already mentioned, we assume these to be 
equal. 

A general linear compensator has form 

(GLCa) ~ = Gz + Hy, 

(GLCb) ~u = Kz + Ly. 

Any compensator ensuring structurally stable regulation must contain a (at least) p-fold internal model of the 
(constant) disturbance, observable from u and controllable form y [6]. This induces a decomposition of the 
compensator state space 

where ~ is G-invariant and ~r2 corresponds to the internal model. These necessary properties are 
equivalent to the following: 

(C1) In some basis G has the structure 

[ G i i  G12 1 
G =  0~,×q~ 0(,×,) , 

where G:~ is a q x q  matrix and G12 is a q x r  matrix with r>p.  The other matrices are partitioned 
accordingly as 

K = l-K1 K2] 

and L is unchanged. 
For the internal model to be observable from u, we must have 

i.e. 

Gll 

ker 0{r × q) 

K1 

FGll  
ker L K1 

G12 

o = {o ) ,  

K2 

 12] 
K= = ( 0 ) .  
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Since, by assumption, the number of controls equals the number of outputs p, this matrix has q + r columns 
and q + p rows. Thus, a necessary condition for this matrix to have full column rank is r < p. We conclude 
that r = p, and that the internal model includes exactly p duplications of the disturbance. We summarize as 
follows. 

(C2) G and K satisfy 

l-G11 
r a n k [ K 1  G121=  K2 I q + P '  

i.e. 

I Gll G12 1 
K1 K2 J 

is invertible. 
(C3) n 2 is a p x p invertible matrix. 

4. The closed-loop equilibrium submanifold 

Given a particular compensator (GLC) satisfying (C1)-(C3) define the set of equilibrium points, regular 
points, and singular points just as for the open-loop system. The closed-loop regulated equilibrium function 
4cl is 

d,f I f ( x ,  U(X, z, C), C) ] 
~cl(x,z,c) = I Gz + Hg(x,c) , 

L c) 

where u(x, z, c) = u ° + Kz + Lg(x, c). Any point satisfying ~Jcl(X, Z, C) = 0 is called a closed-loop regulated 
equilibrium point. The set of all such points is denoted gel- We characterize these points with a lemma. 

4.1. Lemma The following conditions are necessary and sufficient for (x*, z*, c*) to be a closed-loop regulated 
equilibrium point: 

(CL1) The point (x*, u ° + Kz*, c*) is an open-loop regulated equilibrium point. 
(CL2) Gz* = O. 

Denote by ~cl the subset of 5f x .~ x cg defined by 

~¢1 = {(x, z, c): (x, u ° + Kz + Lg(x, c), c) ~ ~} .  

Ool is a C oo mapping from ~c~ to R n +q ÷ 2p. We can relate the rank of O~m to the rank of Ool. The rank of ~ is 
by definition the rank of the matrix 

0 f  ef.ag 0f 

rank ~cl = rank HOg G 
dx 

o 
Ox 

9f 9g 

Og 

Oc 
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Apply elementary row and column operations. Then 

r a n k  (~el = rank 

~xx ~uu K 

0 G 

8g 8g J 
o 

Expand G and K, 

rank ~ = rank 

= rank 

" Sf Sf 
~x ~u K '  

0 Oxl 

0 0 
8g 

o 

8f sf sf 
8x 8u 8c 
8g 8g 

0 0 0 

0 0 0 

~u K2 

G12 

0 

0 

oi 

0 

I 

0 

~c 
0 

= rank 
0 

8# 

,7 ~f ~f ~f 
-~x ~u K ~ ~u K2 ~c 

8g 8g 
o o N 

0 Gtl G12 0 

0 0 0 0 

iI0 0 K1 K2 

0 0 0 

0 Gll G12 

= rank 

dx 8u 8c 
8g c~g 

0 0 0 

0 
0 K1 K2 

0 0 0 

0 Gll G12 

So, by (WRC) and (C3), rank ~¢~ = n + p + q everywhere o n  ~ e l .  Apply Theorem 0 to give the following 
lemma. 

Lemma 4.2. The set of points ~,1 = ~ 1(0) is a closed, regular, submanifold of ~,~ with dimension k. 

We say that ~¢1 satisfies the closed-loop weak regularity condition on ~¢1. In fact, we can show much more 
than this. Lemma 4.1, and the compensator properties (C1)-(C3) give the following theorem. 

Theorem 4.3. The open-loop and closed-loop equilibrium manifolds are diffeomorphic. 

Proof. Let (x*, z*, c*) be any closed-loop regulated equilibrium point. We can define a C ~ map ~ :go~ ~ ~o~ 
by 

(9) (x*, z*, c*) ~ (x*, u ° + Kz*, c*). 
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Define u* = u ° + Kz*.  Clearly, ~ is 1-1 if z* ~ u* is 1-1. Let z* and z* be such that u ° + Kz*  = u ° + Kz* .  
Then, together with (CL2), we have 

(z* - z*) = 

LK1 K ~ J  

and so, by (C2), z* = z* and 9 is 1-1. Now consider any (x', u', c') ~ 8ol. Clearly, 9 is onto if there exists z* 
such that u' = u ° + Kz*  and (CL2) is satisfied. That is, if there exists a solution to the equation 

G0 2 .7* = 0 . 

L Kx K 2  .j 0 __ U' 

But this is equivalent to 

io,, 01 
K I  K 2 .J U 0 - -  U' ' 

which, by (C2), always has a solution. So 9 is onto and, in fact, we see that 

z,_-Fo,, o ] 
L Kx K2 J u ° - u' 

is the only nontrivial part of the inverse relation, so 9 - 1  is also C °°. We conclude that 9 is a 
diffeomorphism. [] 

d°o~ and 8c~ are diffeomorphic. Next consider the set of points 9 (b ) - the  image of the open-loop sheet 
boundaries under 9.  Clearly, 9(b) is a subset of d'ol. The diffeomorphism must preserve the differential and 
topological properties of b. So 9 (b) is a closed regular submanifold (of 8¢~) of codimension one and partitions 
gd into disjoint open sets. We can call these sheets of the closed-loop equilibrium manifold and 9(b) the 
closed-loop sheet boundary. We now show the following result on stability. 

Lemma 4.4. The linearized closed-loop dynamics have an eigenvalue at the origin if  and only i f  the correspond- 
ing open-loop equilibrium point is singular, i.e. i f  and only if  the closed-loop system is on the closed-loop sheet 
boundary. 

Proof. The dynamics 
matrix: 

- -  + ~ L  Ox 

Jel = Og • 

H ~x 

of the closed-loop system are determined by the eigenvalues of the following Jacobian 

Expand G, H, and K: 

t~f Of .  0 9 ~ + ~ ' ~  
@ 

J~l = H10xx 

@ 
H2 0-x 

af of 
~u K1 ~uu K2 

G l l  G l l  

0 0 
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By (C3), H 2 is invertible, so 

[ ~f ~f of 
Ox ~u K1 -~u K2 

rank Jcl = rank 0 Gll G12 

dO 
o o 

= rank 

~xx Ou Kx ~u K2 

Og 0 0 

Gll G12 

= rank 

gx Ou 
Og 

o 

0 0 

,00] 
0 KI K2 • 

0 Gli G12 

Thus, we conclude that the closed-loop linearized dynamics have an eigenvalue at the origin if and only if the 
closed-loop regulated equilibrium point is diffeomorphic to an open-loop singular point. [] 

We also call ~D(b) the submanifold of static singular points. We see that the closed-loop sheets can contain 
no static singular points. 

We want to use these results to examine the properties of closed-loop equilibrium points in adjacent sheets. 
Intuitively, we expect that as a stable system 'crosses' the sheet boundary a closed-loop eigenvalue 'crosses' 
into the right half-plane. However, we think of systems from a parameter-dependent family as being constant 
once selected, so we must be careful about 'moving' systems around in parameter space. Also we will have 
to make some indirect arguments about the dynamics away from the singular point, since by using 
elementary row and column operations instead of similarity transformations, we destroyed the more general 
eigenstructure. 

5. One-parameter families 

Given any two points in a sheet then any smooth curve connecting them, lying completely within the sheet, 
contains no singular points. Similarly, given any two points in adjacent sheets there must exist a smooth 
curve connecting the points that contains one and only one singular point - from the sheet boundary. 
Furthermore, every smooth curve connecting the two points must contain at least one point from the sheet 
boundary. 

Consider the generic behavior of the eigenvalues of the linearized dynamics of a one-parameter family of 
dynamic systems. Because the entries of the Jacobian matrix depend smoothly on the parameter, and because 
the eigenvalues of a matrix depend smoothly on its entries, the eigenvalues depend smoothly on the 
parameter. So we have 2n + p functions, 2(x, z, c), from ~cl to C. Typically, we would not expect any two of 
these functions to have a simultaneous zero. Because the dynamics represent a physical system, nonreal 
eigenvalues must occur as complex-conjugate pairs. However, we would typically expect no two complex- 
conjugate pairs to have zero real part simultaneously, nor would we expect a complex-conjugate pair to have 
zero real part simultaneously with a zero of a real eigenvalue. All we need for the following is that the 
double-zero eigenvalue is not generic in one-parameter families of dynamic systems (see e.g. [ 1] or [8] ). Then 
we can make the following statement: 

Consider a family of dynamic systems dependent on a single parameter, v. The number of poles of the linearized 
dynamics in the right half-plane generically change only in one of two ways. Either a single eigenvalue 
intersects the origin or a single nonzero complex-conjugate pair of eigenvalues intersects the imaginary axis. 
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We can always redefine the parameter so that the critical case corresponds to v = O. Generically, the 
intersection must be transverse, that is, the eigenvalues must actually cross from one half-plane to the other as 
the parameter passes through zero. We refer to the first type as a real nonhyperbolic point, and the second type 
as a complex nonhyperbolic point. 

In general, the multiple parameter nonlinear case will be much more complicated. The following theorem, 
our main results, requires only the one-parameter case. 

Theorem 5.1. I f  some point in a sheet is a stable closed-loop equilibrium point then, for generic systems, every 
point in any adjacent sheet is an unstable closed-loop equilibrium point. 

Proof. Take the stable point and connect it to a point in any adjacent sheet by a smooth curve containing 
one and only one singular point. The curve can be considered a C ~° function, v ~ (x(v), u(v), c(v)). The 
singular point must lie on the sheet boundary. Let the zero value of the parameter v correspond to the 
singular point and let negative (positive) values of v correspond to points in the first (second) sheet. 
Generically, a single real pole crosses through the origin when v = 0. By the previous results we know that 
the linearized closed-loop dynamics have no zero eigenvalues for v < 0. Along the curve, some poles may 
have crossed the imaginary axis while v < 0, but only as complex-conjugate pairs. Thus, the number of poles 
in the right half-plane must be zero or even. The zero eigenvalue at v = 0 may be crossing from right to left or 
from left to right. In either case, for v > 0 there is an odd number of poles in the right half-plane, proving the 
theorem. [] 

These arguments also give the following corollary. 

Corollary 5.2. Along any smooth curve within a sheet, a system can lose stability only by one or more nonzero, 
complex-conjugate pair of poles of the linearized Closed-loop dynamics crossing through the imaginary axis. 

Theorem 5.1 and Corollary 5.2 refer to the behavior of the linearized dynamics. We are interested in the 
behavior of the corresponding nonlinear system. In general, there is little we can say for sure, but if we again 
consider the generic one-parameter case we have the following results. With only a single real pole, or a single 
nonzero pair of poles, crossing the imaginary axis we can restrict our focus to behavior on a planar invariant 
manifold. When the equilibrium point of the linearized dynamics is a real nonhyperbolic point a one- 
parameter family of planar nonlinear systems generically experiences a saddle-node bifurcation. When the 
equilibrium point is a complex nonhyperbolic point the one-parameter family of planar nonlinear systems 
generically undergoes a Hopf  bifurcation. (See again [ 1] or 1-8]). The remaining dynamics are hyperbolic and 
so structurally stable. Therefore, we have the following corollaries for nonlinear systems. 

Corollary 5.3. Along any smooth curve within a sheet, a generic system will lose stability only by a Hopf  
bifurcation. 

Corollary 5.4. Ira generic system is stable everywhere on a sheet then it loses stability at the sheet boundary and 
the mechanism is a saddle-node bifurcation. 

In all the above results the use of one-parameter families allows us to apply standard results on generic 
bifurcations. If we try to consider the general multiparameter case the number of generic possibilities quickly 
becomes large. 

5.1. A remark on the results 

The above analysis assumed a structurally stable linear regulator. We consider this assumption unrestric- 
tive because structural stability is a natural requirement at the design point to ensure robustness to small 
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nonlinearities and unmodelled uncertainties, i.e. everything other than the explicit parameter  dependence. 
However, we would have preferred to prove an upper bound on all regulators, and then obtained the result 
for structurally stable compensators as a special case. We are still pursuing the more general case. It is 
worthwhile to note how the preceding argument changes and where it breaks down. 

Regulation requires an internal model, but dropping the structural stability requirement means that the 
model need not be a p-fold duplicate. Then condition (C1) becomes 

(CI ')  In some basis, G has the structure 

GaI Glz 1 
G = L o'- o J' 

where previously we found that r = p, but now we have 0 < r < p. We proceed as before to determine that 

= 09 rank ~¢~ rank 

0 0 0  

Ou dc Kx K2 0 

0 ~ 0 0 I 
Oc 

0 0 Gll  G12 0 

The second matrix must still have full column rank, but need not be square, and so need not have full row 
rank. So the equality rank Cbcl = n + p + q becomes rank ~bcl < n + p + q. If the rank is constant, which is 
not guaranteed, we have that the set of closed-loop equilibrium points is a closed regular submanifold of 
dimension greater than or equal to that of the open-loop equilibrium manifold. So these manifolds will not 
generally be diffeomorphic, and the structure of our argument breaks down. 

6. Conclusions 

In this note we studied the use of a single linear compensator to regulate a parameter-dependent family of 
control systems. We found that the structure of the open-loop system places a fundamental limitation on the 
robustness of any such compensator. 

In particular, we considered the product space of states, controls, and parameters as a C ~ manifold. Under 
certain regularity conditions the set of all open-loop equilibrium points forms a closed, regular, submanifold 
(the 'open-loop equilibrium manifold') with dimension equal to the number of parameters. Then, under some 
additional rank assumptions, the set of all 'singular' points - points at which the system pencil of the 
linearized system loses rank due to a zero at the origin or some other degeneracy - forms a closed, regular 
submanifold of the equilibrium manifold, with codimension one. This submanifold partitions the open-loop 
equilibrium manifold into disjoint open sets ('sheets'). 

We show that selecting a linear compensator  at some regular point, i.e. at a point within a sheet, defines 
a diffeomorphism between the open-loop and closed-loop equilibrium manifolds. Recall that such a compen- 
sator is guaranteed to regulate all systems in a neighborhood of the design point, and that no such regulator 
can be designed at a singular point. Of course, the diffeomorphism preserves the partitioning, and on the 
closed-loop equilibrium manifold the sheet boundaries represent the set of points at which the linearized 
closed-loop dynamics have a pole at the origin. We then argue that generically the closed-loop system, if it 
has not done so already, must lose stability across a sheet boundary. Thus, the sheet structure, which is 
a property of the open-loop system and independent of the compensation method, represents an upper 
bound on the allowable parameter  values for any single linear compensator. 

Another genericity argument relates the behavior of the linearized system to that of the original nonlinear 
system. We contend that the original nonlinear system must either lose stability within the sheet via a Hopf  
bifurcation or at the sheet boundary via a saddle-node bifurcation. Because we never specify the design point, 
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or the details of the linear compensator, the results shown here apply to linear regulation of almost all 
smooth control systems. 

The structure of the open-loop equilibrium manifold and an example showing the consequences for 
regulation are explored in some detail in [2]. 

We made several assumptions. We assumed that the control space had the same dimension as the output 
space. This assumption does not affect the design of a compensator in a small neighborhood of the design 
point, but it is easy to see that additional controls may change the global behavior. Consider, for example, 
a situation in which two controls become linearly dependent. This will cause the system pencil to lose rank, 
and so restrict the robustness of any linear compensator. Adding an additional independent control would 
eliminate this situation. We also assumed that the rank of D(x, u, c) = det ~ol(X, u, c) was one everywhere on 
the open-loop equilibrium manifold. 

The theorems derived involved only points on the equilibrium manifolds. Therefore, we could interpret our 
final result as saying that any stabilizing compensator enforcing regulation must fail in an adjacent sheet. 
A stabilizing compensator that relaxes the regulation conditions slightly (an almost-regulating compensator) 
might be able to maintain stability over a much wider range. 
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